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Introduction and notation

INTRODUCTION AND NOTATION

Claims reserve for unsettled claims of past exposure:
> IBNeR (Incurred But Not enough Reported) or IBNS (Incurred But Not Settled)
» IBNyR (Incurred But Not yet Reported) or IBNR (Incurred But Not Reported)

Most of the classical claims reserving methods estimate the claims reserve for both the
reported claims and the IBNyR at the same time.

Run-off table Development years
. . . Originyears | 0 | 1 J J
| = origin year or accident year, year of 0
occurrence 1
. Observations: | t+ | <l
| =development year =3
io{o1..1} jo{ol..J} J<l| | -J+1
Observations available at the end of year | : [ Yio Yii | Vi1

{yiji i+j<lI, j:O,...,J}




Introduction and notation

Y; incremental claims in development year j, for claims with origin year i;
referred to the accounting year i + |

Gij = XYk  cumulative claims for origin year i after j development years

k=0
Incremental claims Y;; Cumulative claims G
payments in cell (i, j) cumulative payments
payments for finalized claims cumulative payments for finalized claims
payments for unit of exposure cumulative payments for wunit of total
_ o exposure
(e.g. number payments in cell (i, j), . . :
o _ claims incurred (cumulative payments +
number of policies, or number of claims, case estimate for unfinalized claims)

or earned premiums in origin year i)

. . . total number of reported claims
number of reported claims with delay |

total number of payments
number of claims payments in cell (i, j)

Introduction and notation

Development years
. . Origin .
The lower triangle needs to be estimated or years | 01| | ] J
predicted 0
1
Observatiohs: 1 + | < |
;0 i+j>1, i<, j<J} =]
_ | -J+1
In the following, let
i Yii-i+er| | Yi
Y;; incremental payments
Then Predidtions; | + | > |
Cij ultimate claim amount of origin
year i
J
R= X Yj=GCy-G 4 outstanding loss liabilities for origin year i
j=1-i+1

Remark: R need to be predicted.

In WM the predictors for the R are named claims reserves; for brevity, we name claims
reserves the R and call estimators of the claims reserves the corresponding predictors.




Introduction and notation

Remarks:
1) loss reserving models are applied for estimating/predicting the outstanding loss
liabilities
2) different methods applied to the same aggregated data (payments or claims
incurred, number of claims and claims averages statistics, indexed or unindexed
claims data, ...) lead to different results
3) the claims figures in the claims development triangles (paid or incurred data)
include the allocated loss adjustment expense (ALAE); the unallocated loss
adjustment expenses (ULAE) need to be estimated separately
4) in classical claims reserving literature a point estimate of the outstanding loss
liabilities is provided by applying an algorithm
5) stochastic claims reserving model are introduced:
to justify claims reserving algorithms;
to quantify the uncertainty inherent to the best estimate of the outstanding loss
liabilities
6) we assume | =J and denote t =1 =J the maximum development year
= available information at the end of yeart: ~ {y;: i+j<t, j=0...tf

= we have to predict the outstanding loss liabilities for origin years i =1,...t

Prediction and prediction error

Let

PREDICTION AND PREDICTION ERROR

the maximum development year
Y;; incremental payments i, j=0,1....t origin DevTaIOpment years
Probabilistic assumptions on Y;;, i, j =0,1,....t: yegrs 01 |/ t
parametric models: the distributions of the 1 <D T eI |2 @ i
r.v. Yj; belong to a specific family of : Yo Y; Y| | Y

distributions

semi-parametric models: the distributions of

ctions

the r.v. Y;; are not completely specified; Lower triangle of pred

only some moment structures a given.

Estimation problem: given the data {yij N N A :0,...,t} in the upper
triangle, the model parameters need to be estimated.

Prediction problem: the random variables in the lower triangle, or some functions of
them, need to be predicted.




Prediction and prediction error

Let the r.v. W be a function of the r.v. in the lower triangle
W= (Y ci+j>t)
tot
eg.W=3% X Y thetotal outstanding loss liabilities or claims reserve.
i=1j=t-i+1
When a probabilistic model for the r.v. Y, i, ] =0,1...;t has been estimated, it can be used
to predict the r.v. W throughout an estimator

W= f(¥; i+ j<t)

that is a function of the r.v. in the upper triangle. The estimator W is also called predictor
of W.

The estimate

~

W= fly; i+ jst)
gives the prediction of W.

The estimator should satisfy some properties, such as unbiasedness (i.e. E(W) = E(W)),

Prediction and prediction error

To quantify the quality of the estimator W we consider the prediction error of the
estimator given by the root of the Mean Square Error of Prediction.

The Mean Square Error of Prediction (MSEP) can be evaluated unconditional or

conditional on the set of r.v. 4 :{Yij :i + j <t} for which the observations are available.

Unconditional mean square error of prediction

MSEP(W) = E[(\/T/ —W)2]

The prediction error of the estimator (root of the Mean Square Error of Prediction) is
denoted by RMSEP.

Remark:

E[(VT/ - E(\N))Z] does not tell us anything about the quality of the estimate provided by W

for a specific realization of < .




Prediction and prediction error

If W and W are independent

MsEP() = £V -w)?] =var (w) + 7 - Q)]

where

= var(W) is the process variance which describes the intrinsic “variability” of W its
square root quantify the so-called process risk

E[(VV - E(\N))Z] is the average parameter estimation error which reflects the

uncertainty in the estimation of the parameters of the model; its square root quantify
the so-called estimation risk.

If W is an unbiased estimator for E(W) (i.e. E(W) = E(W))

MSEP(W) = var (W) + E[(VT/ — E(\/T/))Z] = var (W) +var (W)

Prediction and prediction error

To quantify the quality of the estimator W for a specific realization of < we consider the
Conditional mean square error of prediction

MSEP,, (W) = E|WW - W)?| 4 |=var Wi4) + (¥ - EW o)
where

= var(W|) is the conditional process variance which describes the intrinsic
“variability” of W': its square root quantify the so-called process risk

. (VV - E(\N\@t))2 is the parameter estimation error which reflects the uncertainty in

the estimation of the parameters of the model; its square root quantify the so-called
estimation risk.
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Prediction and prediction error

Remarks:

> MSEP,, (W) = E[(VV —W)Z\,@t‘] isar.yv.

» The unconditional MSEP is the expectation of the conditional MSEP on ¢4 , in fact
MSEP(W) = E[(v'\'/ —W)Z] = E{E[(VV —W)Z\[%t]}: e{msEP,, (W)}

> W= f(Yij it st) is a 4 -measurable estimator for E(W|<4) and a predictor for W.
» We have to estimate the parameter estimation error,
~ 2
(W - E(\N‘@t))

because E(W|74) is unknown and we use W as an estimate.
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The Chain-Ladder model

THE CHAIN-LADDER MODEL

In actuarial literature the Chain-Ladder (CL) method is often understood as a purely
computational algorithm and it leaves the question open as to which probabilistic models
lead to that algorithm.

Let

Y;; incremental payments, i, =0,...,t

i
Gij = XYk cumulative claims for origin year i after j development years
k=0
Distribution-free CL model (Mack (1993); Withrich, Merz (2008))
CL1)  therandom vectors (Cig,...,Cj;), i =0,...,t are stochastically independent

CL2) (Ci,...,.Cit) form a Markov chain, i =0,...,t
There exist development factors fj >0, j=0,...,t-1,
and variance parameters sz >0, j=0,...,t-1,
such that for all i =0,...,t and for all j =0,...,t, we have
E(Ci[Cior---. G, j1)= ElGi[G 1) = 4G ja
var(Cij ‘Cio,...,Ci,j_l):var(Cij ‘Ci,j—l)zo'jz—lci,j—l

12




The Chain-Ladder model

Remarks:

» We make assumptions only on the first two moments and not on the explicit
distribution of C'J given Ci,j—l .

» The factors f; are called link ratios, development factors, CL factors of age-to-age
factors. They describe how we link successive cumulative claims.

Given (%t‘:{Yij Tt st}, under the assumptions CL1) and CL2), recursively we have
= E(Cit‘[%t):Ci,t—i [ft—i ["'[ft—l [ :O,...,t

Hence, we get that the outstanding claims liabilities of origin year i at time t, based on
<, are predicted by

E(Clt‘[/t)_cl,t—l :CI,t—I [(ft_l [[ft_l_l) | :O,,t

The CL factors fj are unknown and need to be estimated.
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The Chain-Ladder model

It can be shown that the following estimators are unbiased and uncorrelated estimators of

the parameters f; ol [j1]j+1 i

L d
|
|
=
[EEN

2 Ci 1 t=ij-
— _1=0 _ ij i,j+1 . B .
fj = It—j—l - ; t—j-1 C. ] =0,..t-1 t—j-1
> G 0y i
i=0 k=0

The CL estimator for the ultimate claims C;; is

~ -1 -
cL _
Gt =Gt I_tl s
j=t-i

and the CL estimator for the claims reserve R =C;; —=C; _; is

~CL _~ CL
R =G -G
Remarks:

> EitCL in an unbiased estimator of E(C;;)
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» The Chain-Ladder model

It can be shown that the following estimators are unbiased estimators of the parameters
ajz, ] =0,...,t-2.

2

t-j-1 (G =~

57 = 1 > Gy S f, j=0,..t-2
t—-]-1 i Gij

It can be interpreted as a weighted average of the square of the residuals.

As for the parameter atz_l, if we do not have enough data (i.e. we do not have | >J) we
cannot estimate it similarly.

Since the estimates 65,...,53_2 are generally decreasing, an estimate for atz_l can be

obtained by extrapolation according to some formulas such as (see WM):

2 Oty 2 A2

~ o t— ~ ~

t-1 = M —5=, 0t-3, Ot-2
Ot-3
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The Chain-Ladder model

CL prediction and prediction error for a single origin year

Denote by f j the estimates provided by the estimators ﬂ of the CL factors f;
t—)
2

1
Ci,j+1
0

fJ :It—jil j:O,...,t_l
2 G
i=0

The CL estimate for the ultimate claims Cj; is

t-1

N .

Gt =Gt I'tl -
j=t-i

and the CL estimates for the claims reserve R =Cj; —=Cj _j is

A

5CL _ A CL
R™ =Gt —Gt

Remark:

> Since the estimates fj are those of the CL method, the estimates F} are the CL

estimates of the claims reserves
16




The Chain-Ladder model

We have to evaluate the conditional mean square error of prediction of the CL
estimators of the claims reserves F~?1-CL = 5itc" -Gt

MSEP,,, (R™") = E[('%CL B I%)Zf/t]: E[(éitCL =Cit-i —Git +Ci,t—i)2‘@t]

= E[(EitCL - Cit)zf%t] =M&EP, (Ci ™) =var (G| ) + (éitCL - E(Cit\f%))z

An estimate of the conditional process variance var(C;;|<4) is given by

A2 52
R , A t-1 g7/ f;
Var (G 4) = (C)* T kg’
j=t=i C”
where
A CL _ 71
CI] =G t-i [ fh
h=t-i

is the CL estimate of E[Cij \Ci ,t_i]
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The Chain-Ladder model

Much more difficult is to evaluate the conditional parameter estimation error, which

provides an estimate for the accuracy of the CL factor estimators f;.

In fact, we have
2
~ o \ t-1 t-1
(Cit - E(Cit\@t))2 :[Ci,t—i I'tl =G I_tl fil =
j=t-i j=t-i

~ ~ 2
=% (o 0.y - fi 0.0y

The quantity in brackets cannot be calculated directly because, whereas at time t the
estimates f j are known, the parameters f; are not and we actually use f j to estimate

them.

Hence, the conditional parameter estimation error needs to be estimated in some way.

The idea is to analyze the variability of the CL factor estimators fj around the values f;

and then to derive an analytical formula that provide an estimate of the conditional
parameter estimation error.
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The Chain-Ladder model

There are various approaches. By following the Mack (1993) approach, we can rewrite
the quantity in brackets, on the right-hand side of the equation

(éitCL - E(Cit\@t))2 =Cii (ﬂ—i 0. g =~ iy O th—l)z

as follows
2
- ~ 2 t-1 t-1 _, t-1
(ft—i D"th—l_ ft—i D"th—l) :( > T]] = > T] +2 > TJTk
j=t-i j=t-i t-i<j<kst-1
where
T = fioi Do O OF (£ = ) fjaa 0. ey j=t—i,..t-1.
The idea is to estimate
~ ~ 2
(fiei 0. o = oy 0. i)
through the evaluation of the expectation of the r.v.
t-1 _, t-1
j=t-i t-i<j<kst-1
19
The Chain-Ladder model
Denoted by = ={¥j ;i +k<t,0<k< j}
0|1 J t
— E(TkT] f/}jj) =0 for k< j
2 £2 £2 2 3 2 2 3 ot
— E(TJ (@]) = ft—i th—i+l 0. ij_lvar(fj ‘f/yj)fjﬂ_ L. th—l and Var(fj //5)]): ,[_J%
> Gy
h=0

20




The Chain-Ladder model

Hence, an estimate for the conditional parameter estimation error

(éitCL - E(Cit\@t))2 =Cii (f~t—i 0. Ofg = fr O th—l)z

is given by
Az/Az _ _ ~2 2
A G2/ f 5 ) t=1 ., )t O'j/fj
CI Z % T2 O Df _7Jf f 1D--Df—1:Ci,—'( [ f'J D
tlj =t—i t= it Zhjolchj i t - j=t=i : j:t—iZ}]:olchj
2 2
R -1 f:
:(Cn) /
_t'zho Chi

Therefore, we get the following estimate for the conditional mean square error of
prediction

2 £2 ~2 1582
- ~ [ f A t-1 g7/ f;
CL,\ _ -
MEEP, (R%) = (EEH)? 5 é_CL’ MG DS E
j=t=i 4 j=t=i 2h=0  Chj
~2
1 O] 1 1
=C8? Y D aar ot
jr-i TR CS Shib ™oy
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The Chain-Ladder model

CL prediction and prediction error for aggregated origin years

Denoted by R the total claims reserve

the CL estimator for the total claims reserve is

- t -

CL _

R = RO =3[ -G o)
=1 i=1

We have to evaluate the conditional mean square error of prediction of the CL

estimator of the total claims reserve R°"

. 2
f/t] [( ZlcutCL P Cltj

2
MSEP,, (R%) = E{(ZRCL > R]

=1 i=1

t ~
4 = MSER%(ZCHCL]
i=1

22




The Chain-Ladder model

Consider two different origin years i <k
MSEP,, (5itCL + 6ktCL): E[(GitCL +C™ -Gy - th)zf%]
=var(Cj; + Cy|4) + (éitCL +C " - E(Cyy + th\f%t))z

Because of the independence assumption (CL1)

var (Ci¢ + Ciq|4) =var (Cig| ) +var (G| )

For the conditional parameter estimation error we have

~

G+, - ECulon) - ECal ) = 6 - ECulanf + (B -Ecen)f +

+ 2(('5“CL - E(c:it\@t))(ffktCL - E(th\@'t‘))

23

The Chain-Ladder model
Hence
MSEP,,, (c’:‘itCL + éktCL): MSEP%((EHCL)+ MSEP,, (c':"ktCL)+
+2(6,% - BG4 Et - B )
So, in the MSEP,,, (R®") we have to estimate all the cross-products.
In WM the following estimate is suggested (Estimator 3.16):

A SCLy _ L, S CL NP =N A
MSEP,, (R™) = ZMSEP, (R™)+2 ¥ GiCq X oy
i=1 I<i<kst j=t-i 2h=0  Chj

~21£2
t . - . t o~ t-1 o5/l f:
=Z{MSEF’/4(F%CL)+Ci?L( ZCﬁLj Y 2”}

i=1 k=i+1 j=t-i ZL_:O_l Chj

24




The Bornhuetter-Ferguson model

THE BORNHUETTER-FERGUSON MODEL

Such as the CL method, also the Bornhuetter-Ferguson (BF) method is usually
understood as a purely mechanical algorithm; however it is possible to define an
appropriate underlying stochastic model which motivates the BF method.

Let
Y; incremental payments, i, j =0,...,t

j
Gij = XYk cumulative claims for origin year i after j development years
k=0

BF model (Withrich, Merz (2008))

BF1) the random vectors (Ci,...,Ci;), i =0,...,t are stochastically independent
BF2)  There exist parameters u; >0, i =0,...,t, b; >0, j =0,...,t with by =1,
such that for all i =0,...,t, j=0,...,t-1and k=0,...,t — j, we have
E(Cio) =ty
ECi, j+k[Ciov-.-.Cij )= Cij +ui bojuk b))

25

The Bornhuetter-Ferguson model

Under the assumptions BF1) and BF2), we have
= E(C”):Ulb] and E(Cit):ui [ :0,...,t

Remarks:

» The parameter u; can be interpreted as the expected value of the ultimate claims for
origin year |

» The parameters b;, j =0,...,t, reflect the expected cumulative development pattern:
b; is the rate of the ultimate claims which is expected to be paid within development
year |j

Given <4 ={Y;; :i + j <t}, under the assumptions BF1) and BF2), we have

= E(Cil4)=Ci, i +u (L-B) 1=0,..t
Hence, the outstanding claims liabilities of origin year i at time t based on & are
predicted by

E(Cit|4)-Cig- =u (L-h) 1=0,..t




The Bornhuetter-Ferguson model

Denote by u;, i =0,...,t, and Ej, j =0,...,t, some appropriate estimators of the
parameters, then the BF estimator for the ultimate claims C;; is

~ BF _ o~
C™ =Ci, i+ (L-h)
and the BF estimator for the claims reserve R =C;; =C; _; is

=~BF _ < BF o~ ~
R™ =G -G =0 (1_bt—i)
Remarks:

» Under the BF model, no dispersion hypotheses are assumed; for the evaluation of the
MSEP we will see an approach developed within the GLM framework.

> Since E(C;)=u;, the estimates of the parameters u;, i =0,...,t, are called “initial”
estimates of the ultimate claims; typically, these estimates are based on external data,
e.g. from pricing or market information.

» As for the estimate of the development pattern, the CL development factors f j are
used.

27

The Bornhuetter-Ferguson model
In fact, from assumption CL2) we get

E(cy)= E[E(Cij G = fi4E(G, j-)
By iterating we have

E(C)= E(Cit)[ljjljfk_l}

where |‘|tk‘:1j fk_l represents the rate of the expected ultimate claims paid within
development year j.
Since from assumption BF2) we have E(C;; )= ub; = E(C;; )b;, it seems plausible to

estimate the parameter b; by

with j=0,...,t-1 and fk, k=0,...,t -1, the CL estimates of the CL factors fj.

28




The Bornhuetter-Ferguson model

Comparison between BF and CL estimates

Let the BF estimate for the claims reserve R =C;; —=C;

5BF _ A ~CL
R™ =G (1‘ b )
where
G, i =0,...,t, are the “initial” estimates of the ultimate claims;
b = |‘| f ™t with f,, k=0,...,t-1, the CL estimates of the CL factors f;.

Since the CL claims reserve can be written as follows
sCL _ A CL _ACL CL xCL CL
R™ =GCi¢ " =6, t-i =Cit Clt '—C ( b[l)
in the BF method we completely believe in our initial estimate G;; on the other side, in the

CL method, the initial estimate is replaced by the estimate éitc",which is only based on
the run-off observations.
We will see that such two “extreme positions” in the claims reserving problem can be
combined (“credible claims reserves”).
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Poisson derivation of the CL algorithm
POISSON DERIVATION OF THE CL ALGORITHM

The Poisson model is mainly used for claims counts. However, since the maximum
likelihood estimators of the parameters of the cross-classified Poisson model lead to the
same reserve as the CL algorithm, the Poisson model is an alternative stochastic model
(besides the distribution-free CL model) that can be used to motivate the CL reserves.

Let
Y; incremental payments, i, j =0,...,t

j
ij = XYk cumulative claims for origin year i after j development years

Poisson model

There exist parameters g >0, i =0,...,t, y; >0, j =0,...,t such that the incremental
payments Y; are independent, P0|sson distributed W|th

t
E(Y;)=ay; foralli=0,...,t, j=0,...,t and jgoyj =

30




Poisson derivation of the CL algorithm

Under the Poisson model assumptions we have
t
= Ci = XYy is Poisson distributed with  E(Ci{)=a i =0,...,t
k=0
Remarks:
> g can be interpreted as the expected value of the ultimate claims for origin year i

> yj, 1=0,...t, define an expected “cash-flow pattern” over the different development
periods j;in fact, y; can be interpreted as the rate of the ultimate claims, paid in the
development period j.

Moreover, such development pattern is independent of i, in fact

E(Y;) _ Vi o . :
= ]=1...t Is independent of i.
E(Y%o) 1o
Given 4 ={Y; :i + j <t}, under the Poisson model assumptions, we have
t t-i _
= E(Cilon)=Ciita X v :Ci,t—i+a1(1‘ Zz ij i =0,...,t
j=t=i+l j=0

We note the same expression implied by the BF assumptions:
E(Cit|4) =G, =i +u (1-1) i=0,...,t
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Poisson derivation of the CL algorithm

Maximum likelihood estimates of the parameters

Given the set of observations {yij i+t )= O,...,t} the likelihood function is

. Vi
L(ag,...,a,Vo,--- Y1) = T[] {exd_aiyj)(aiyj) J

i+j<t Yij!

and the log-likelihood equations are
t-i
2 gy =

j j

t-i
z y” iZO,...,t
=
t=] .
Xay;=2Yj 1=0..t
=0 i=0

)

t
i

under the constraint that ioyj =1.
We denote the solution of]the log-likelihood equations as maximum likelihood (ML)
estimates of the parameters of the Poisson model
a™', i=o0..t, prot, j=0.t
and denote
&PO', i=0,...,t, Vjpo', j=0,...,t
the respective estimators.
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Poisson derivation of the CL algorithm

The Poisson ML estimators for E(Y; |24 )= E(Y; )==a;y; and E(C;|4) are
> POl _ POl PO
Yi T =
and
_ t=i
GO =C i+ [1- 3 PO
j=0
Remark:

It can be proved that the CL estimator
- t-1 —
CL _
Ci =G N
J=t=l
and the Poisson ML likelihood estimator
5, POI =C - I+a1POl [1 ZO~PO|J
j

lead to the same reserve estimates.

33

Poisson derivation of the CL algorithm

Remarks:

» The distribution-free CL model and the Poisson model provide the same estimates of
the claims development pattern

J
bCL _ |_| fk =3 kPO
j=0
> If the CL claims development pattern is used to estimate the BF claims reserves

R =a [1-5%)

we note that, since the CL and the Poisson ML estimates of the development cash-
flow pattern are the same, the reserve estimates only differ in the choice of the
expected ultimate claims,

j=0

R|POI —a,PO' (1 Z APOI]

in fact we have the initial estimate of the ultimate claims U; for the BF reserve and the

ML estimate a,PO' for the Poisson model.

> Since R =R =¢, L(l )then a7 = ¢,
34




Poisson derivation of the CL algorithm

Remark:

> The Poisson model implies that the increments Yj; are non-negative.

However in practical applications (e.g. in the case of claims incurred) we also observe
negative increments, which indicates that the Poisson model is not appropriate.

Anyway, the distribution-free CL model also applies for negative increments, as long
as cumulative payments are positive.

» Under the Poisson model

« the incremental payments Yj; are independent Poisson distributed

E(Yj)=ay; = log(E(Y;))=log(a)+log(y;) foralli=0,...t, j=0,..,t

hence, we could think of a Generalized Linear Model.

This consideration leads us to the second part.
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