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Introduction and notation 
 

INTRODUCTION AND NOTATION 

Claims reserve for unsettled claims of past exposure: 

� IBNeR (Incurred But Not enough Reported) or IBNS (Incurred But Not Settled) 

� IBNyR (Incurred But Not yet Reported) or IBNR (Incurred But Not Reported) 

Most of the classical claims reserving methods estimate the claims reserve for both the 
reported claims and the IBNyR at the same time. 

Run-off table 

=i  origin year or accident year, year of 
occurrence 

=j  development year 

{ }Ii ,...,1,0∈  { }Jj ,...,1,0∈   IJ ≤  

Observations available at the end of year I : 

{ }JjIjiyij ,,0,: K=≤+  

 Development years 

Origin years 0 1  j     J  
0         
1         
         
JI −          

1+− JI          
         
i  0iy    ijy  iIiy −,     
         
         
         
I          

Observations: Iji ≤+  
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Introduction and notation 
 

ijY  incremental claims in development year j , for claims with origin year i ; 

referred to the accounting year ji +  

∑=
=

j

k
ikij YC

0
 cumulative claims for origin year i  after j  development years 

 

Incremental claims ijY  Cumulative claims ijC  

payments in cell ),( ji  

payments for finalized claims 

payments for unit of exposure 

(e.g. number payments in cell ),( ji , 

number of policies, or number of claims, 
or earned premiums in origin year i ) 

number of reported claims with delay j  

number of claims payments in cell ),( ji  

cumulative payments 

cumulative payments for finalized claims 

cumulative payments for unit of total 
exposure 

claims incurred (cumulative payments + 
case estimate for unfinalized claims) 

total number of reported claims 

total number of payments 

 

4 
 

Introduction and notation 
 

The lower triangle needs to be estimated or 
predicted 

 

{ }JjIiIjiYij ≤≤>+ ,,:  

In the following, let 

ijY  incremental payments 

Then 

iJC   ultimate claim amount of origin 
year i  

iIiiJ

J

iIj
iji CCYR −

+−=
−=∑= ,

1
  outstanding loss liabilities for origin year i  

Remark: iR  need to be predicted. 

In WM the predictors for the iR  are named claims reserves; for brevity, we name claims 
reserves the iR  and call estimators of the claims reserves the corresponding predictors. 

 Development years 
Origin 
years 0 1  j     J  

0         
1         
         
JI −          

1+− JI          
         
i       1, +−iIiY   JiY  

         
         
         
I          

Predictions: Iji >+  

Observations: Iji ≤+  
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Introduction and notation 
 

Remarks: 
1) loss reserving models are applied for estimating/predicting the outstanding loss 

liabilities 

2) different methods applied to the same aggregated data (payments or claims 
incurred, number of claims and claims averages statistics, indexed or unindexed 
claims data, ...) lead to different results 

3) the claims figures in the claims development triangles (paid or incurred data) 
include the allocated loss adjustment expense (ALAE); the unallocated loss 
adjustment expenses (ULAE) need to be estimated separately 

4) in classical claims reserving literature a point estimate of the outstanding loss 
liabilities is provided by applying an algorithm 

5) stochastic claims reserving model are introduced: 

to justify claims reserving algorithms; 

to quantify the uncertainty inherent to the best estimate of the outstanding loss 
liabilities 

6) we assume JI =  and denote JIt ==  the maximum development year 

� available information at the end of year t: { }tjtjiyij ,,0,: K=≤+  

� we have to predict the outstanding loss liabilities for origin years ti ,...,1=  
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Prediction and prediction error 
 

PREDICTION AND PREDICTION ERROR 

Let 

t  the maximum development year 

ijY  incremental payments tji ...,,1,0, =  

Probabilistic assumptions on ijY , tji ...,,1,0, = : 

� parametric models: the distributions of the 
r.v. ijY  belong to a specific family of 

distributions 
� semi-parametric models: the distributions of 

the r.v. ijY  are not completely specified; 

only some moment structures a given. 

� Estimation problem: given the data { }tjtjiyij ,,0,: K=≤+ in the upper 

triangle, the model parameters need to be estimated. 

� Prediction problem: the random variables in the lower triangle, or some functions of 
them, need to be predicted. 

 Development years 
Origin 
years 0 1  j     t  

0         
1         
         
i  0iY    ijY   1, +−itiY   tiY  

         
         
         
t          

Lower triangle of predictions 

Upper triangle of observations 
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Prediction and prediction error 
 
Let the r.v. W  be a function of the r.v. in the lower triangle 

( )tjiYfW ij >+= :  

e.g. ∑ ∑=
= +−=

t

i

t

itj
ijYW

1 1
 the total outstanding loss liabilities or claims reserve. 

When a probabilistic model for the r.v. ijY , tji ...,,1,0, =  has been estimated, it can be used 

to predict the r.v. W  throughout an estimator 

( )tjiYfW ij ≤+= :
~  

that is a function of the r.v. in the upper triangle. The estimator W~  is also called predictor 
of W . 

The estimate 

( )tjiyfW ij ≤+= :ˆ  

gives the prediction of W . 

The estimator should satisfy some properties, such as unbiasedness (i.e. )()
~

( WEWE = ), 
… 
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Prediction and prediction error 
 
To quantify the quality of the estimator W~  we consider the prediction error of the 

estimator given by the root of the Mean Square Error of Prediction. 

The Mean Square Error of Prediction (MSEP) can be evaluated unconditional or 

conditional on the set of r.v. { }tjiYijt ≤+= :W  for which the observations are available. 

Unconditional mean square error of prediction 

[ ]2)
~

()
~

( WWEWMSEP −=  

The prediction error of the estimator (root of the Mean Square Error of Prediction) is 
denoted by RMSEP. 

Remark: 

[ ]2))(
~

( WEWE −  does not tell us anything about the quality of the estimate provided by W~  

for a specific realization of tW . 
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Prediction and prediction error 
 
If W~  and W  are independent 

[ ] [ ]22 ))(
~

()()
~

()
~

( WEWEWvarWWEWMSEP −+=−=  

where 

� )(Wvar  is the process variance which describes the intrinsic “variability” of W ; its 
square root quantify the so-called process risk 

� [ ]2))(
~

( WEWE −  is the average parameter estimation error which reflects the 

uncertainty in the estimation of the parameters of the model; its square root quantify 
the so-called estimation risk. 

If W~  is an unbiased estimator for )(WE  (i.e. )
~

()( WEWE = ) 

[ ] )
~

()())
~

(
~

()()
~

( 2 WvarWvarWEWEWvarWMSEP +=−+=  
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Prediction and prediction error 
 
To quantify the quality of the estimator W~  for a specific realization of tW  we consider the 

Conditional mean square error of prediction 

[ ] ( )22 )(
~

)()
~

()
~

( ttt WEWWvarWWEWMSEP
t

WWWW −+=−=  

where 

� )( tWvar W  is the conditional process variance which describes the intrinsic 

“variability” of W ; its square root quantify the so-called process risk 

� ( )2)(
~

tWEW W−  is the parameter estimation error which reflects the uncertainty in 

the estimation of the parameters of the model; its square root quantify the so-called 
estimation risk. 
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Prediction and prediction error 
 

Remarks: 

� [ ]tWWEWMSEP
t

WW
2)

~
()

~
( −=  is a r.v. 

� The unconditional MSEP is the expectation of the conditional MSEP on tW , in fact 

[ ] [ ]{ } { })~
()

~
()

~
()

~
( 22 WMSEPEWWEEWWEWMSEP

tt WW =−=−=  

� ( )tjiYfW ij ≤+= :
~  is a tW -measurable estimator for )( tWE W  and a predictor for W . 

� We have to estimate the parameter estimation error, 

( )2)(
~

tWEW W−  

because )( tWE W  is unknown and we use W~  as an estimate. 
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The Chain-Ladder model 
 

THE CHAIN-LADDER MODEL 

In actuarial literature the Chain-Ladder (CL) method is often understood as a purely 
computational algorithm and it leaves the question open as to which probabilistic models 
lead to that algorithm. 

Let 

ijY  incremental payments, tji ,,0, K=  

∑=
=

j

k
ikij YC

0
 cumulative claims for origin year i  after j  development years 

Distribution-free CL model (Mack (1993); Wüthrich, Merz (2008)) 

CL1) the random vectors ),,( 0 iti CC K , ti ,,0 K=  are stochastically independent 

CL2) ( )iti CC ,...,0  form a Markov chain, ti ,,0 K=  
There exist development factors 0>jf , 1,,0 −= tj K , 

and variance parameters 02 >jσ , 1,,0 −= tj K , 

such that for all ti ,,0K=  and for all tj ,,0 K= , we have 
( ) ( ) 1,11,1,0 ,, −−−− == jijjiijjiiij CfCCECCCE K  

( ) ( ) 1,
2

11,1,0 ,, −−−− == jijjiijjiiij CCCvarCCCvar σK  
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The Chain-Ladder model 
 

Remarks: 

� We make assumptions only on the first two moments and not on the explicit 
distribution of ijC  given 1, −jiC  . 

� The factors jf  are called link ratios, development factors, CL factors of age-to-age 

factors. They describe how we link successive cumulative claims. 
 
Given { }tjiYijt ≤+= :W , under the assumptions CL1) and CL2), recursively we have 

⇒  ( ) 1, −−− ⋅⋅⋅= titititit ffCCE KW   ti ,,0 K=  

Hence, we get that the outstanding claims liabilities of origin year i  at time t , based on 

tW , are predicted by 

( ) )1( 1,, −⋅⋅⋅=− −−−− tititiititit ffCCCE KW   ti ,,0 K=  

The CL factors jf  are unknown and need to be estimated. 
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The Chain-Ladder model 
 
It can be shown that the following estimators are unbiased and uncorrelated estimators of 
the parameters jf  

∑

∑

=
∑

∑
=

−−

=

+
−−

=

−−

=

−−

=
+ 1

0

1,
1

0

1

0

1

0
1,~ jt

i ij

ji
jt

k
kj

ij
jt

i
ij

jt

i
ji

j C

C

C

C

C

C
f  1,...,0 −= tj  

The CL estimator for the ultimate claims itC  is 

∏=
−

−=
−

1

,
~~ t

itj
jiti

CL
it fCC  

and the CL estimator for the claims reserve itiiti CCR −−= ,  is 

iti
CL

it
CL

i CCR −−= ,
~~  

Remarks: 

� CL
itC

~
 in an unbiased estimator of )( itCE  

 0  j  1+j    t  
0        
1        
        

1−− jt         
        
        
t         
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� The Chain-Ladder model 
 
It can be shown that the following estimators are unbiased estimators of the parameters 

2
jσ , 2,,0 −= tj K . 

∑ 












−

−−
=

−−

=

+1

0

2
1,2 ~

1
1~

jt

i
j

ij

ji
ijj f

C

C
C

jt
σ    2,...,0 −= tj  

 
It can be interpreted as a weighted average of the square of the residuals. 
 

As for the parameter 2
1−tσ , if we do not have enough data (i.e. we do not have JI > ) we 

cannot estimate it similarly. 
 

Since the estimates 2
2

2
0 ˆ,...,ˆ −tσσ  are generally decreasing, an estimate for 2

1−tσ  can be 

obtained by extrapolation according to some formulas such as (see WM): 














= −−

−

−
−

2
2

2
32

3

4
22

1 ˆ,ˆ,
ˆ

ˆ
ˆ tt

t

t
t min σσ

σ
σσ  
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The Chain-Ladder model 
 
CL prediction and prediction error for a single origin year 
 

Denote by jf̂  the estimates provided by the estimators jf
~

 of the CL factors jf  

∑

∑
= −−

=

−−

=
+

1

0

1

0
1,

ˆ
jt

i
ij

jt

i
ji

j

c

c
f    1,...,0 −= tj  

The CL estimate for the ultimate claims itC  is 

∏=
−

−=
−

1

,
ˆˆ

t

itj
jiti

CL
it fcC  

and the CL estimates for the claims reserve itiiti CCR −−= ,  is 

iti
CL

it
CL

i cCR −−= ,
ˆˆ  

Remark: 

� Since the estimates jf̂  are those of the CL method, the estimates iR̂  are the CL 

estimates of the claims reserves 
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The Chain-Ladder model 
 
We have to evaluate the conditional mean square error of prediction of the CL 

estimators of the claims reserves iti
CL

it
CL

i CCR −−= ,
~~  

 

[ ] [ ]

[ ] ( )22

2
,,

2

)(
~

)()
~

()
~

(

)
~

()
~

()
~

(

tit
CL

ittit
CL

ittit
CL

it

titiititi
CL

itti
CL

i
CL

i

CECCvarCMSEPCCE

CCCCERRERMSEP

t

t

WWW

WW

W

W

−+==−=

+−−=−= −−

 

An estimate of the conditional process variance )( titCvar W  is given by 

∑=
−

−=

1 22
2

ˆ

ˆ/ˆ
)ˆ()(ˆ

t

itj
CL
ij

jjCL
ittit

C

f
CCrav

σ
W  

where 

∏=
−

−=
−

1

,
ˆˆ

j

ith
hiti

CL
ij fcC  

is the CL estimate of [ ]itiij CCE −,  
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The Chain-Ladder model 
 
Much more difficult is to evaluate the conditional parameter estimation error, which 

provides an estimate for the accuracy of the CL factor estimators jf
~

. 

In fact, we have 

( )

( )211
2
,

2
1

,

1

,
2

~~

~
)(

~

−−−−−

−

−=
−

−

−=
−

⋅⋅−⋅⋅=

=









∏−∏=−

tittititi

t

itj
jiti

t

itj
jititit

CL
it

ffffC

fCfCCEC

KK

W

 

 
The quantity in brackets cannot be calculated directly because, whereas at time t  the 

estimates jf̂  are known, the parameters jf  are not and we actually use jf̂  to estimate 

them. 
 
Hence, the conditional parameter estimation error needs to be estimated in some way. 
 

The idea is to analyze the variability of the CL factor estimators jf̂  around the values jf  

and then to derive an analytical formula that provide an estimate of the conditional 
parameter estimation error. 
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The Chain-Ladder model 
 
There are various approaches. By following the Mack (1993) approach, we can rewrite 
the quantity in brackets, on the right-hand side of the equation 

( ) ( )211
2
,

2 ~~
)(

~
−−−−− ⋅⋅−⋅⋅=− tittitititit

CL
it ffffCCEC KKW  

as follows 

( ) ∑+∑=









∑=⋅⋅−⋅⋅

−

−≤<≤−

−

−=

−

−=
−−−−

1

1

1 2
2

12
11 2

~~ t

tkjit
kj

t

itj
j

t

itj
jtittit TTTTffff KK  

where 

( ) 1111
~~~~

−+−+−− ⋅⋅−⋅⋅⋅= tjjjjititj fffffffT KK  ,   1,..., −−= titj . 

The idea is to estimate 

( )211
~~

−−−− ⋅⋅−⋅⋅ tittit ffff KK  

through the evaluation of the expectation of the r.v. 

∑+∑
−

−≤<≤−

−

−=

1

1

1 2 2
t

tkjit
kj

t

itj
j TTT  
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The Chain-Ladder model 
 

 

Denoted by { }jktkiYikj ≤≤≤+= 0,:U  

 

⇒  0)
~

(ˆˆ)( 111 =⋅⋅−⋅⋅= −+−− tjjjjjitjj ffffEffTE KK UU  

 

⇒  0)( =jjkTTE U         for  jk <  

 

⇒  ( ) 2
1

2
1

2
1

2
1

22 ~ˆˆˆ)( −+−+−− ⋅⋅⋅⋅⋅= tjjjjititjj fffvarfffTE KK UU      and   ( )
∑

= −−

=

1

0

2
~

jt

h
hj

j
jj

C
fvar

σ
U  

 

 

0 1  j     t  
        
        
        
        
        
        
        
        

jU  



21 
 

The Chain-Ladder model 
 
Hence, an estimate for the conditional parameter estimation error 

( ) ( )211
2
,

2 ~~
)(

~
−−−−− ⋅⋅−⋅⋅=− tittitititit

CL
it ffffCCEC KKW  

is given by 

∑
∑

=

∑
∑










∏=∑ ⋅⋅⋅

∑
⋅⋅⋅

−

−= −−
=

−

−= −−
=

−

−=
−

−

−=
−+−−

=
−+−−−

1

1
0

22
2

1

1
0

221 22
,

1 2
1

2
1

2
1

0

22
2

1
2

1
22

,

ˆˆ
)ˆ(

ˆˆˆˆˆˆ
ˆˆˆˆˆ

t

itj
jt

h hj

jjCL
it

t

itj
jt

h hj

jjt

itj
jiti

t

itj
tjjjt

h hj

jj
jitititi

c

f
C

c

f
fcfff

c

f
fffc

σ

σσ
KK

 

Therefore, we get the following estimate for the conditional mean square error of 
prediction 

∑














∑
+=

=∑
∑

+∑=

−

−= −−
=

−

−= −−
=

−

−=

1

1
0

2

2
2

1

1
0

22
21 22

2

1
ˆ
1

ˆ

ˆ
)ˆ(

ˆ/ˆ
)ˆ(

ˆ

ˆ/ˆ
)ˆ()

~
(ˆ

t

itj
jt

h hj
CL
ijj

jCL
it

t

itj
jt

h hj

jjCL
it

t

itj
CL
ij

jjCL
it

CL
i

cCf
C

c

f
C

C

f
CREPSM

t

σ

σσ
W
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The Chain-Ladder model 
 
CL prediction and prediction error for aggregated origin years 
 

Denoted by R  the total claims reserve 

∑=
=

t

i
iRR

1
 

the CL estimator for the total claims reserve is 

( )∑ −=∑=
=

−
=

t

i
iti

CL
it

t

i

CL
i

CL CCRR
1

,
1

~~~  

 
We have to evaluate the conditional mean square error of prediction of the CL 

estimator of the total claims reserve CLR
~  

 









∑=






















∑−∑=






















∑−∑=

=====

t

i

CL
itt

t

i
it

t

i

CL
itt

t

i
i

t

i

CL
i

CL CMSEPCCERRERMSEP
tt

1

2

11

2

11

~~~
)

~
( WW WW  
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The Chain-Ladder model 
 
 
Consider two different origin years ki <  

( ) [ ]
( )2

2

)(
~~

)(

)
~~

(
~~

tktit
CL

kt
CL

ittktit

tktit
CL

kt
CL

it
CL

kt
CL

it

CCECCCCvar

CCCCECCMSEP
t

WW

WW

+−+++=

−−+=+
 

 
Because of the independence assumption (CL1) 

)()()( tkttittktit CvarCvarCCvar WWW +=+  

 
For the conditional parameter estimation error we have 

( ) ( ) ( )
( )( ))(

~
)(

~
2

)(
~

)(
~

)()(
~~ 222

tkt
CL

kttit
CL

it

tkt
CL

kttit
CL

ittkttit
CL

kt
CL

it

CECCEC

CECCECCECECC

WW

WWWW

−−+

+−+−=−−+
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The Chain-Ladder model 
 
 
Hence 

( ) ( ) ( )
( )( ))(

~
)(

~
2

~~~~

tkt
CL

kttit
CL

it

CL
kt

CL
it

CL
kt

CL
it

CECCEC

CMSEPCMSEPCCMSEP
ttt

WW

WWW

−−+

++=+
 

 

So, in the )
~

( CLRMSEP
tW  we have to estimate all the cross-products. 

 
In WM the following estimate is suggested (Estimator 3.16): 
 

∑












∑
∑









∑+=

∑ ∑
∑

+∑=

=

−

−= −−
=+=

≤<≤

−

−= −−
==

t

i

t

itj
jt

h hj

jjt

ik

CL
kt

CL
it

CL
i

tki

t

itj
jt

h hj

jjCL
kt

CL
it

t

i

CL
i

CL

c

f
CCREPSM

c

f
CCREPSMREPSM

t

tt

1

1

1
0

22

1

1

1

1
0

22

1

ˆ/ˆ
2ˆˆ)

~
(ˆ

ˆ/ˆˆˆ2)
~

(ˆ)
~

(ˆ

σ

σ

W

WW
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The Bornhuetter-Ferguson model 
 

THE BORNHUETTER-FERGUSON MODEL 

Such as the CL method, also the Bornhuetter-Ferguson (BF) method is usually 
understood as a purely mechanical algorithm; however it is possible to define an 
appropriate underlying stochastic model which motivates the BF method. 

Let 

ijY  incremental payments, tji ,,0, K=  

∑=
=

j

k
ikij YC

0
 cumulative claims for origin year i  after j  development years 

 
BF model (Wüthrich, Merz (2008)) 

BF1) the random vectors ),,( 0 iti CC K , ti ,,0 K=  are stochastically independent 

BF2) There exist parameters 0>iu , ti ,,0 K= , 0>jb , tj ,,0 K=  with ,1=tb  

such that for all ti ,,0 K= , 1,,0 −= tj K  and jtk −= ,,0 K , we have 

( ) 00 buCE ii =  

( ) ( )jkjiijijikji bbuCCCCE −+= ++ ,,0, K  
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The Bornhuetter-Ferguson model 
 

Under the assumptions BF1) and BF2), we have 

⇒  ( ) jiij buCE =  and ( ) iit uCE =   ti ,,0K=  

Remarks: 

� The parameter iu  can be interpreted as the expected value of the ultimate claims for 

origin year i  

� The parameters jb , tj ,,0 K= , reflect the expected cumulative development pattern: 

jb  is the rate of the ultimate claims which is expected to be paid within development 

year j  

Given { }tjiYijt ≤+= :W , under the assumptions BF1) and BF2), we have 

⇒  ( ) ( )itiititit buCCE −− −+= 1,W   ti ,,0 K=  

Hence, the outstanding claims liabilities of origin year i  at time t  based on tW  are 

predicted by 

( ) ( )itiititit buCCE −− −=− 1,W   ti ,,0 K=  
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The Bornhuetter-Ferguson model 
 

Denote by iu~ , ti ,,0K= , and jb
~

, tj ,,0K= , some appropriate estimators of the 

parameters, then the BF estimator for the ultimate claims itC  is 

( )itiiti
BF

it buCC −− −+= ~
1~~

,  

and the BF estimator for the claims reserve itiiti CCR −−= ,  is 

( )itiiti
BF

it
BF

i buCCR −− −=−= ~
1~~~

,  

Remarks: 

� Under the BF model, no dispersion hypotheses are assumed; for the evaluation of the 
MSEP we will see an approach developed within the GLM framework. 

� Since ( ) iit uCE = , the estimates of the parameters iu , ti ,,0 K= , are called “initial” 

estimates of the ultimate claims; typically, these estimates are based on external data, 
e.g. from pricing or market information. 

� As for the estimate of the development pattern, the CL development factors jf̂  are 

used. 
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The Bornhuetter-Ferguson model 
 

In fact, from assumption CL2) we get 

( ) ( )[ ] ( )1,11, −−− == jijjiijij CEfCCEECE . 

By iterating we have 

( ) ( ) 









∏=
−

=

−1 1t

jk
kitij fCECE , 

where ∏ −
=

−1 1t
jk kf  represents the rate of the expected ultimate claims paid within 

development year j . 

Since from assumption BF2) we have ( ) ( ) jitjiij bCEbuCE == , it seems plausible to 

estimate the parameter jb  by 

∏=
−

=

−1 1ˆˆ
t

jk
k

CL
j fb  

with 1,,0 −= tj K  and kf̂ , 1,,0 −= tk K , the CL estimates of the CL factors jf . 
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The Bornhuetter-Ferguson model 
 
Comparison between BF and CL estimates 
 
Let the BF estimate for the claims reserve itiiti CCR −−= ,  

( )CL
iti

BF
i buR −−= ˆ1ˆˆ  

where 

iû , ti ,,0 K= , are the “initial” estimates of the ultimate claims; 

∏=
−

=

−1 1ˆˆ
t

jk
k

CL
j fb  with kf̂ , 1,,0 −= tk K , the CL estimates of the CL factors jf . 

Since the CL claims reserve can be written as follows 

( )CL
it

CL
it

CL
it

CL
it

CL
ititi

CL
it

CL
i bCbCCcCR −−− −=−=−= ˆ1ˆˆˆˆˆˆ

,  

in the BF method we completely believe in our initial estimate iû ; on the other side, in the 

CL method, the initial estimate is replaced by the estimate CL
itĈ ,which is only based on 

the run-off observations. 

We will see that such two “extreme positions” in the claims reserving problem can be 
combined (“credible claims reserves”). 
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Poisson derivation of the CL algorithm 
 

POISSON DERIVATION OF THE CL ALGORITHM 

The Poisson model is mainly used for claims counts. However, since the maximum 
likelihood estimators of the parameters of the cross-classified Poisson model lead to the 
same reserve as the CL algorithm, the Poisson model is an alternative stochastic model 
(besides the distribution-free CL model) that can be used to motivate the CL reserves. 

Let 

ijY  incremental payments, tji ,,0, K=  

∑=
=

j

k
ikij YC

0
 cumulative claims for origin year i  after j  development years 

 
Poisson model 

There exist parameters 0>ia , ti ,,0 K= , 0>jγ , tj ,,0 K=  such that the incremental 

payments ijY  are independent, Poisson distributed with 

( ) jiij aYE γ=    for all ti ,,0 K= , tj ,,0 K=    and 1
0

=∑
=

t

j
jγ  
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Poisson derivation of the CL algorithm 
 
Under the Poisson model assumptions we have 

⇒  ∑=
=

t

k
ikit YC

0
 is Poisson distributed with ( ) iit aCE =  ti ,,0K=  

Remarks: 

� ia  can be interpreted as the expected value of the ultimate claims for origin year i  

� jγ , tj ,,0 K= , define an expected “cash-flow pattern” over the different development 

periods j ; in fact, jγ  can be interpreted as the rate of the ultimate claims, paid in the 

development period j . 

Moreover, such development pattern is independent of i , in fact 
( )
( ) 00 γ

γ j

i

ij

YE

YE
=   tj ,,1K=  is independent of i . 

Given { }tjiYijt ≤+= :W , under the Poisson model assumptions, we have 

⇒  ( ) 









∑−+=∑+=
−

=
−

+−=
−

it

j
jiiti

t

itj
jiititit aCaCCE

0
,

1
, 1 γγW   ti ,,0K=  

We note the same expression implied by the BF assumptions: 

( ) ( )itiititit buCCE −− −+= 1,W   ti ,,0 K=  
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Poisson derivation of the CL algorithm 
 
Maximum likelihood estimates of the parameters 
 
Given the set of observations { }tjtjiyij ,,0,: K=≤+  the likelihood function is 

( )( )
∏














−=

≤+ tji ij

y
ji

jitt y

a
aaaL

ij

!
exp),,,,( 00

γ
γγγ KK  

and the log-likelihood equations are 










=∑=∑

=∑=∑

−

=

−

=

−

=

−

=

tjya

tiya

jt

i
ij

jt

i
ji

it

j
ij

it

j
ji

,,0

,,0

00

00

K

K

γ

γ
 

under the constraint that 1
0

=∑
=

t

j
jγ . 

We denote the solution of the log-likelihood equations as maximum likelihood (ML) 
estimates of the parameters of the Poisson model 

POI
iâ ,  ti ,,0 K= ,  POI

jγ̂ ,  tj ,,0 K=  

and denote 
POI
ia~ ,  ti ,,0 K= ,  POI

jγ~ ,  tj ,,0 K=  

the respective estimators. 
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Poisson derivation of the CL algorithm 
 
The Poisson ML estimators for ( ) ( ) jiijtij aYEYE γ===W  and ( )titCE W  are  

POI
j

POI
i

POI
ij aY γ~~~ =  

and  











∑−+=
−

=
−

it

j

POI
j

POI
iiti

POI
it aCC

0
,

~1~~ γ  

Remark: 
 
It can be proved that the CL estimator 

∏=
−

−=
−

1

,
~~ t

itj
jiti

CL
it fCC  

and the Poisson ML likelihood estimator 











∑−+=
−

=
−

it

j

POI
j

POI
iiti

POI
it aCC

0
,

~1~~ γ  

lead to the same reserve estimates. 
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Poisson derivation of the CL algorithm 
 
Remarks: 

� The distribution-free CL model and the Poisson model provide the same estimates of 
the claims development pattern 

∑=∏=
=

−

=

− j

j

POI
k

t

jk
k

CL
j fb

0

1 1 ~ˆˆ γ  

� If the CL claims development pattern is used to estimate the BF claims reserves 

( )CL
iti

BF
i buR −−= ˆ1ˆˆ  

we note that, since the CL and the Poisson ML estimates of the development cash-
flow pattern are the same, the reserve estimates only differ in the choice of the 
expected ultimate claims, 











∑−=
−

=

it

j

POI
j

POI
i

POI
i aR

0
ˆ1ˆˆ γ  

in fact we have the initial estimate of the ultimate claims iû  for the BF reserve and the 

ML estimate POI
iâ  for the Poisson model. 

� Since ( )CL
it

CL
it

CL
i

POI
i bCRR −−== ˆ1ˆˆˆ  then CL

it
POI
i Ca ˆˆ = . 
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Poisson derivation of the CL algorithm 
 
 
Remark: 

� The Poisson model implies that the increments ijY  are non-negative. 

However in practical applications (e.g. in the case of claims incurred) we also observe 
negative increments, which indicates that the Poisson model is not appropriate. 

Anyway, the distribution-free CL model also applies for negative increments, as long 
as cumulative payments are positive. 

 

� Under the Poisson model 

• the incremental payments ijY  are independent Poisson distributed 

• ( ) jiij aYE γ=  ⇔  ( )( ) )log()log(log jiij aYE γ+=   for all ti ,,0 K= , tj ,,0 K=  

hence, we could think of a Generalized Linear Model. 
 
 
This consideration leads us to the second part. 


